Developing a “Migraneous” Rat Model to Evaluate the Efficacy and Mechanisms of OMT on Migraine Relief

Katherine Byrd OMS III, Caroline Gregory OMS II, Krishna Sharma, Jennifer Xie PhD, Regina Fleming DO

1Department of Basic Science, 2Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine - Arkansas, Jonesboro, Arkansas; 3Biological Science and Arkansas Bioscience Institute, Arkansas State University, Jonesboro, Arkansas

Methods

- Migraine
 - Recurrent unilateral throbbing cephalic pain
 - Associated with hypersensitivity to a variety of external stimuli, e.g. light, smell, and sound
 - Neck pain is a common comorbidity

- Sensitization and activation of the trigeminocervical complex

- A novel rodent model of migraine
 - Durham group sensitized rats with CFA and then exposed them to California Bay Leaves
 - We used CFA + Umbellulone
 - New behavior endpoint – spontaneous running-wheel activities

- Clinically, OMT increase migraneurs’ quality of life scores
 - Weak clinical trial efficacy
 - No mechanistic studies

- Our goal is to demonstrate the pathophysiologic underpinnings of OMT utilizing an established model of migraine pathology in rodents.

Umbellularia Californica - “headache tree”
Developing a “Migraneous” Rat Model to Evaluate the Efficacy and Mechanisms of OMT on Migraine Relief

Katherine Byrd OMS III¹, Caroline Gregory OMS II², Krishna Sharma³, Jennifer Xie PhD¹, Regina Fleming DO²

¹Department of Basic Science, ²Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine - Arkansas, Jonesboro, Arkansas; ³Biological Science and Arkansas Bioscience Institute, Arkansas State University, Jonesboro, Arkansas

Introduction

Methods

• Female Sprague Dawley Rats
• “Double-hit” strategy – Priming with Complete Freund Adjuvant (CFA, 10 μL/injection, 5 injections/side) to the trapezius muscle
• Trigger with Umbellulone (50 mM/50 μL), the major volatile molecule of the California Bay Leaf, for 30 minutes at 2% O2
• OMT: 1 min articulatory techniques, and 1 min soft tissue techniques
• Behaviors were measured for 5 hours

Cephalic Allodynia

Voluntary Wheel-Running

Group A

Day ~2-0

Acclimation

Day 1

Test VF BL, CFA Inj.

Day 2

OMT/SHAM

Day 8

t= 0 h

OMT/SHAM Treatment

Test VF hourly

Umbellulone Inhalation

Group B

Day ~14-0

Running Wheel Training

Day 1

CFA Inj.

Day 2

OMT/SHAM

Running Wheel

Day 4

OMT/SHAM Treatment

Running Wheel

Day 8

t= 0 h

Umbellulone Inhalation

OMT/SHAM

Running Wheel

t= 1.5 h

Running Wheel

Von Frey Chambers

Umbellulone Inhalation Chamber

Inhalation Chamber
Developing a “Migraneous” Rat Model to Evaluate the Efficacy and Mechanisms of OMT on Migraine Relief

Katherine Byrd OMS III, Caroline Gregory OMS II, Krishna Sharma, Jennifer Xie PhD, Regina Fleming DO

1Department of Basic Science, 2Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine - Arkansas, Jonesboro, Arkansas; 3Biological Science and Arkansas Bioscience Institute, Arkansas State University, Jonesboro, Arkansas

Introduction

Cephalic Alldynia

Effect of OMT on Umbellulone-induced alldynia in CFA-primed SD rats.

Periorbital tactile threshold was assessed for baseline and hourly for 5 hours after Umbellulone or vehicle exposure with calibrated von Frey filaments (cut off = 8g).

A. Umbellulone significantly lowered tactile threshold at 2 and 3 h post-dose in CFA primed rats. Saline-primed rats maintained normal threshold (n=5/group). P<0.05 compared to pre-umbellulone baseline to post-CFA on Day 8.

B. OMT significantly diminished the development of periorbital allodynia induced by Umbellulone in CFA-primed rats. OMT was applied in some rats for 2 min under 2% isoflurane by a D.O. OMT was given at 3 times (D2, D4, D8 post-UMB). N=8/group. P<0.05 compared to corresponding control group at the same time point.

Voluntary Wheel-Running Activity

Effect of Umbellulone inhalation on wheel-running activity in CFA-primed rats across 4 day awake models, 8 day anesthetized models, and 8 day awake models.

C. & D. Umbellulone reduced voluntary running-wheel activities in CFA-primed rats. The difference between treatment and baseline indicated UMB treated rats experienced a decrease in spontaneous activity compared to vehicle groups at 1 and 2h post dose. N=3-4/group.

E, F & G. OMT showed a trend of reducing the impact of umbellulone. Prolonged isoflurane exposure has shown strong confounding effects to this behavior.
Developing a “Migraneous” Rat Model to Evaluate the Efficacy and Mechanisms of OMT on Migraine Relief

Katherine Byrd OMS III1, Caroline Gregory OMS II1, Krishna Sharma3, Jennifer Xie PhD1, Regina Fleming DO2

1Department of Basic Science, 2Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine - Arkansas, Jonesboro, Arkansas; 3Biological Science and Arkansas Bioscience Institute, Arkansas State University, Jonesboro, Arkansas

- The Primary goal of our study is to \textbf{increase the evidence base} by which OMT can be used to treat migraines by examining its pathophysiology in a rodent model.
- At this time, we have modeled OMT’s success in reducing \textbf{cephalic allodynia} in migraneous rats.
- We continue to make \textbf{step-wise adjustments} to our voluntary running-wheel model from performing OMT in anesthetized to awake animals and then shortening the time course. We hypothesize that, as in human, the rats may be experiencing soreness post-treatment. To mitigate this we plan to change the time course of the OMT/sham treatment themselves as if patient were coming in for treatment during the prodrome period of a migraine.
- \textbf{Next steps} include gathering blood serum CGRP ELISA data and examining the trigeminal ganglia and trigeminal nucleus caudalis utilizing immunohistochemistry.
References

