The Efficacy of Treating Thoracic Cage Counterstrain Tender Points with Varied Mobile Point Durations in a Classroom Setting

Jessica Smith, OMS II1, Min-Kyung Jung, Ph.D.1, James Docherty, OMS III1, Patricia Kooyman, DO1, Sheldon Yao, DO1

1New York Institute of Technology College of Osteopathic Medicine, Dept. of Osteopathic Medicine Old Westbury, NY 11568

\section*{Introduction}

\subsection*{Background Information}

- Counterstrain (CS) Technique treats tender points by positioning the joint into a mobile point, a position of maximal comfort, and is held for 90 seconds.
- Various texts differ in the duration of CS treatment for rib tender points, with some stating 120 seconds versus 90 seconds.
- Longer treatment time may have been primarily a strategy by Dr. Jones to ensure patients were relaxed in the treatment position. There has been a national shift to use 90 seconds in clinical settings.
- However, there is limited evidence relating to efficacy differences between these durations.

\subsection*{Objective/Hypothesis}

\textbf{Objective}: To determine if the efficacy of CS treatment of rib and thoracic tender points is significantly different if held for 90 or 120 seconds in a classroom setting.

\textbf{Hypothesis}: Application of holding a mobile point for 90 versus 120 seconds will be equally effective in reducing pain and treating thoracic and rib tender points.

\section*{Clinical Significance}

- Using Osteopathic Manipulative Treatment (OMT) in the clinical setting is often limited by time constraints of each patient visit. If CS for 90 seconds is as effective as CS for 120 seconds, this information is important for physicians to be aware of to increase efficiency and efficacy at each visit.
The Efficacy of Treating Thoracic Cage Counterstrain Tender Points with Varied Mobile Point Durations in a Classroom Setting

Jessica Smith, OMS II1, Min-Kyung Jung, Ph.D.1, James Docherty, OMS III1, Patricia Kooyman, DO1, Sheldon Yao, DO1

1New York Institute of Technology College of Osteopathic Medicine, Dept. of Osteopathic Medicine Old Westbury, NY 11568

Methods

- Participants were second year medical students from the New York Institute of Technology College of Osteopathic Medicine (NYITCOM) who treated their fellow student partner.
- Subjects were diagnosed with an anterior or posterior thoracic or rib tender point.
- Different lab sessions were randomized to hold the mobile point for either 90 or 120 seconds. The entire class was asked to complete an online form that documented the point, the duration of treatment, and the pre- and post pain level (on a scale of 0-10) of the tender point if there was a true tender point present.

Results

Conclusion

Tap on any header to jump to section!
The Efficacy of Treating Thoracic Cage Counterstrain Tender Points with Varied Mobile Point Durations in a Classroom Setting

Jessica Smith, OMS II1, Min-Kyung Jung, Ph.D.1, James Docherty, OMS III1, Patricia Kooyman, DO1, Sheldon Yao, DO1

1New York Institute of Technology College of Osteopathic Medicine, Dept. of Osteopathic Medicine Old Westbury, NY 11568

Introduction

- Data was collected via an online questionnaire and was analyzed using MS Excel and IBM SPSS Statistics 25.

- CS was found to be effective at relieving pain when treatment was held for 90 or 120 seconds at either ribs or thoracic tender points (p<0.001*, Figure 11 and Table 1).

- The data was further subdivided based on region and the pain achieved at the mobile point. A linear regression model was fitted to predict the change in pain score from the duration (90s. vs. 120s.) controlling for the pre-pain score in each subgroup of (CS Region, Mobile point pain) = (Rib, 0), (Rib, >0), (Thoracic, 0), and (Thoracic, >0).

- The mean pain reduction was not significantly different between the durations of treatment for Rib CS when reaching the mobile point of 0 or >0 or for Thoracic CS when reaching the mobile point of 0 (p = 0.06, p = 0.54, p = 0.07, respectively. Table 1).

- The mean pain reduction was found to be statistically significantly different between the durations of treatment for Thoracic CS if the mobile point was >0 with a p-value of 0.008* (Table 1).

Methods

- Variability mobile point durations in a classroom setting

Results

<table>
<thead>
<tr>
<th>Subject Demographics</th>
<th>Figure 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of participants: n = 562</td>
<td></td>
</tr>
<tr>
<td>90 seconds: n = 300</td>
<td></td>
</tr>
<tr>
<td>120 seconds: n = 262</td>
<td></td>
</tr>
<tr>
<td>Mobile point excluded: n = 22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictors</td>
</tr>
<tr>
<td>Pre-treatment pain</td>
</tr>
<tr>
<td>Duration</td>
</tr>
<tr>
<td>Linear regression to predict change in pain given pre-treatment pain and duration of treatment.</td>
</tr>
</tbody>
</table>

Conclusion

-Tap on any header to jump to section!
The Efficacy of Treating Thoracic Cage Counterstrain Tender Points with Varied Mobile Point Durations in a Classroom Setting

Jessica Smith, OMS II1, Min-Kyung Jung, Ph.D., James Docherty, OMS III1, Patricia Kooyman, DO1, Sheldon Yao, DO1
1New York Institute of Technology College of Osteopathic Medicine, Dept. of Osteopathic Medicine Old Westbury, NY 11568

Introduction

Final Remarks

• CS was highly effective in reducing pain of both thoracic and rib tender points when treated for 90 or 120 seconds.

• These findings suggest that CS treatment of 90 seconds is non-inferior to 120 seconds for rib tender points.

• Thoracic CS treatment showed significance that 90 seconds produced greater pain reduction than 120 seconds (when mobile point was >0). However, this is possibly due to sampling bias due to the classroom settings.

Methods

References

Looking Forward

• Limitations of this study include that this was a classroom setting and the rib and thoracic tender points were diagnosed on non-symptomatic students.

• Further research is needed to correlate these findings in the clinical setting, especially in the case of the significant thoracic findings.

References

• Figure 1. https://castlebodywork.com/jones-lawrence/

Counterstrain Locations

Anterior Thoracic Points

Posterior Thoracic Points

Anterior Rib Points

Posterior Rib Points

Figure 2

Figure 3

Figure 4

Figure 5
Anterior Thoracic T2 Counterstrain Point

Video 1: Treatment of an Anterior Thoracic CS Point
Posterior Thoracic Transverse Process T8 Counterstrain Point

Video 2: Treatment of a Posterior Thoracic CS Point
Anterior Rib R1 Counterstrain Point

Video 3: Treatment of an Anterior Rib CS Point
Posterior Rib 6 Counterstrain Point

Video 4: Treatment of a Posterior Rib CS Point
To ensure that students were truly in the correct treatment position, they were asked to document the tenderness reached when at the mobile point. Any entries that documented the mobile point with a pain level of 3 or higher were considered to be unreliable. These entries indicated that students were either unable to position the subject properly or they misunderstood the question.
Linear regression to predict change in pain given pre-treatment pain and duration of treatment.

<table>
<thead>
<tr>
<th></th>
<th>Rib CS, mobile point tenderness = 0</th>
<th></th>
<th>Rib CS, mobile point tenderness > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictors</td>
<td>Unstandardized B (95% CI)</td>
<td>p-value</td>
<td>Unstandardized B (95% CI)</td>
</tr>
<tr>
<td>Pre-treatment pain</td>
<td>0.95 (0.89, 1.00)</td>
<td><0.001*</td>
<td>0.80 (0.68, 0.92)</td>
</tr>
<tr>
<td>Duration</td>
<td>-0.25 (-0.52, 0.01)</td>
<td>0.06</td>
<td>-0.15 (-0.62, 0.33)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Thoracic CS, mobile point tenderness = 0</th>
<th></th>
<th>Thoracic CS, mobile point tenderness > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictors</td>
<td>Unstandardized B (95% CI)</td>
<td>p-value</td>
<td>Unstandardized B (95% CI)</td>
</tr>
<tr>
<td>Pre-treatment pain</td>
<td>0.87 (0.77, 0.96)</td>
<td><0.001*</td>
<td>0.78 (0.64, 0.91)</td>
</tr>
<tr>
<td>Duration</td>
<td>-0.56 (-1.17, 0.04)</td>
<td>0.07</td>
<td>-0.99 (-1.71, -0.27)</td>
</tr>
</tbody>
</table>

Table 1: Linear regression model