Pain in the Neck: Absence of cervical spine pain in elderly patients with fractures

Jason P Blake OMS III, 1 Sarah K Spilman MA, 2 Nicholas H Kluesner MD, 2 Chase N Deobald DO, 2 Carlos A Pelaez 3 MD

1Des Moines University, 2UnityPoint Health, 3The Iowa Clinic

Introduction

Goals:
- Examine prevalence of reported neck pain and cervical spine (c-spine) fractures in elderly patients who presented to the emergency department after sustaining a traumatic injury
- Determine if patient characteristics, mechanism of injury, comorbid health conditions, or severity of injury influenced the prevalence of neck pain in this population.

Significance

Clinical management guidelines (Canadian C-Spine Rule and the National Emergency X-Radiography Utilization Study) are regularly used to determine the need for computed tomography (CT) imaging of the c-spine

One of the key inclusion criteria for both guidelines is the presence or absence of neck pain

Our institution’s previous research found that >20% of older trauma patients with c-spine fracture did not report the pain or tenderness components of somatic dysfunction on initial musculoskeletal exam

Methods

- Retrospective study performed at Level I trauma center in the Midwest
- Trauma registry was used to identify patients 55+ years old who presented to the hospital with blunt injury during the study period (April 2017 - December 2018)
- Excluded from analysis if Glasgow Coma Scale (GCS) was <14 at time of clinical examination
- 64-99 patients with c-spine fractures were required to detect a moderate effect size with a power of 0.80
- Patients considered “pain-free” if they did not complain of c-spine pain and denied tenderness to palpation on initial musculoskeletal exam

Results

Table 1. Asymptomatic Fractures (click image to enlarge)

Table 2. Demographic and injury characteristics of patients who received a CT Scan of the C-Spine (n=612) (click image to enlarge)

Figure 1. Flow Chart of Reviewed Patients (click image to enlarge)

Conclusion

- 21% of elderly patients with a cervical spine fracture did not report neck pain on initial examination
- The absence of neck pain cannot be used to definitively rule out c-spine fractures in this population and is an insufficient criterion for identifying which patients should receive c-spine CT imaging
- 40% of patients without neck pain (n=380) received CT imaging of the c-spine, suggesting that many providers are scanning this population liberally
- Applying the CCR and NEXUS criteria retroactively (Table 1) demonstrates the CCR would have detected all asymptomatic fractures, but the NEXUS criteria would have missed 6 patients
- The CCR’s age criteria (age 65+) was responsible for catching 8 fractures that otherwise would have been missed using the CCR alone
- Patients aged 55-64 are not “protected” by the CCR’s age criteria and are therefore potentially vulnerable to missed c-spine fractures; liberal imaging should be used in this population
- With the exception of abdominal distracting injuries, there were no detectable patterns to identify patient or injury characteristics that predicted asymptomatic cervical fractures
- Consider applying both CCR and NEXUS criteria when evaluating this population, especially those aged 55-64
- None of the pain-free fractures required an operative procedure, however 15 of 17 asymptomatic patients were discharged with a c-collar or brace

References

See hyperlink here
National Emergency X-Radiography Utilization Study (NEXUS)

Canadian C-Spine Rule (CCR)

High Risk Factors
Any of the following:
- Age 65+
- Dangerous Mechanism*
- Paresthesias in extremities

Low Risk Factors
Any of the following:
- Absence of midline cervical tenderness
- Delayed onset of neck pain
- MVC: simple rear-end
- Sitting position in ED
- Ambulatory at ANY time

*Dangerous Mechanism
- Fall from 3+ feet or 5 steps
- Axial load to head (e.g., driving)
- MVC: 100+ km/hr (62+ mph), ejection or rollover
- Motorized recreational vehicles
- Bicycle struck or collision
Figure 1. Flow Chart of Reviewed Patients

Patients Aged 55 Years and Older
N=1483

Exclusion Criteria
N=271

Neck Pain
N=260

No Cervical Spine CT
N=28

Fracture
N=63

No Fracture
N=169

Cervical Spine CT
N=232

No Cervical Spine CT
N=572

No Neck Pain
N=952

Cervical Spine CT
N=380

Fracture
N=17

No Fracture
N=363
Table 1. Asymptomatic Fractures

<table>
<thead>
<tr>
<th>Age/Sex</th>
<th>Mechanism of Injury</th>
<th>AMS in ED</th>
<th>Intoxicated</th>
<th>CCR</th>
<th>NEXUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>58 - F</td>
<td>MVC - Highway Speeds</td>
<td>No</td>
<td>No</td>
<td>* (M)</td>
<td>–</td>
</tr>
<tr>
<td>64 - F</td>
<td>MVC - Highway Speeds</td>
<td>GCS=14</td>
<td>No</td>
<td>* (M)</td>
<td>(D, C)</td>
</tr>
<tr>
<td>64 - M</td>
<td>Fall - 8 steps</td>
<td>No</td>
<td>Yes (0.15)</td>
<td>* (M)</td>
<td>(D, I)</td>
</tr>
<tr>
<td>66 - F</td>
<td>MVC - Highway Speeds</td>
<td>No</td>
<td>No</td>
<td>* (A,M)</td>
<td>(D)</td>
</tr>
<tr>
<td>67 - M</td>
<td>Fall - 6-7 steps</td>
<td>No</td>
<td>No</td>
<td>* (A,M)</td>
<td>–</td>
</tr>
<tr>
<td>69 - M</td>
<td>Tractor accident with ejection</td>
<td>No</td>
<td>No</td>
<td>* (A,M)</td>
<td>(D)</td>
</tr>
<tr>
<td>69 - M</td>
<td>Bicycle crash - 15mph</td>
<td>No</td>
<td>No</td>
<td>* (A,M)</td>
<td>(D)</td>
</tr>
<tr>
<td>70 - M</td>
<td>MVC - Crash into light pole</td>
<td>No</td>
<td>No</td>
<td>* (A,M)</td>
<td>(D)</td>
</tr>
<tr>
<td>73 - F</td>
<td>Fall - same level</td>
<td>No</td>
<td>No</td>
<td>* (A)</td>
<td>–</td>
</tr>
<tr>
<td>78 - M</td>
<td>Fall - same level</td>
<td>No</td>
<td>No</td>
<td>* (A)</td>
<td>–</td>
</tr>
<tr>
<td>79 - M</td>
<td>MVC - Highway Speeds</td>
<td>No</td>
<td>No</td>
<td>* (A,M)</td>
<td>(D)</td>
</tr>
<tr>
<td>86 - F</td>
<td>Fall - 3 steps</td>
<td>No</td>
<td>No</td>
<td>* (A)</td>
<td>–</td>
</tr>
<tr>
<td>87 - M</td>
<td>Fall - 2 steps</td>
<td>No</td>
<td>No</td>
<td>* (A)</td>
<td>(D)</td>
</tr>
<tr>
<td>90 - F</td>
<td>Fall - same level</td>
<td>No</td>
<td>No</td>
<td>* (A)</td>
<td>–</td>
</tr>
<tr>
<td>91 - F</td>
<td>MVC - 45mph</td>
<td>No</td>
<td>No</td>
<td>* (A)</td>
<td>(D)</td>
</tr>
<tr>
<td>93 - M</td>
<td>Fall - same level</td>
<td>No</td>
<td>No</td>
<td>* (A)</td>
<td>(D)</td>
</tr>
<tr>
<td>96 - F</td>
<td>Fall - same level</td>
<td>GCS=14, dementia</td>
<td>No</td>
<td>* (A)</td>
<td>(C)</td>
</tr>
</tbody>
</table>

Legend
A Age 65+ years
C Altered level of consciousness
D Distracting injury
I Intoxication
M Dangerous mechanism
Table 2. Demographic and injury characteristics of patients who received a CT Scan of the C-Spine (N=612)

<table>
<thead>
<tr>
<th></th>
<th>No Neck Pain (N=380)</th>
<th>Neck Pain (n=232)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, n (%)</td>
<td>205 (54%)</td>
<td>113 (49%)</td>
<td>.21</td>
</tr>
<tr>
<td>Age, median (IQR)</td>
<td>74 (63, 84)</td>
<td>73 (63, 83)</td>
<td>.83</td>
</tr>
<tr>
<td>Positive blood alcohol, n (%)</td>
<td>46 (12%)</td>
<td>17 (7%)</td>
<td>.06</td>
</tr>
<tr>
<td>Injury severity score (ISS), median (IQR)</td>
<td>9 (4, 14)</td>
<td>9 (4, 11)</td>
<td>.98</td>
</tr>
<tr>
<td>Other injured body region:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head bleed or skull fracture</td>
<td>130 (34%)</td>
<td>69 (30%)</td>
<td>.25</td>
</tr>
<tr>
<td>Face</td>
<td>35 (9%)</td>
<td>25 (11%)</td>
<td>.53</td>
</tr>
<tr>
<td>Chest</td>
<td>114 (30%)</td>
<td>65 (28%)</td>
<td>.60</td>
</tr>
<tr>
<td>Abdomen</td>
<td>45 (12%)</td>
<td>11 (5%)</td>
<td>.003</td>
</tr>
<tr>
<td>Extremity</td>
<td>121 (32%)</td>
<td>66 (28%)</td>
<td>.38</td>
</tr>
<tr>
<td>Psychiatric disorder</td>
<td>25 (7%)</td>
<td>42 (18%)</td>
<td><.001</td>
</tr>
<tr>
<td>Mortality</td>
<td>9 (2%)</td>
<td>4 (2%)</td>
<td>.59</td>
</tr>
</tbody>
</table>
Data Analysis

All analyses were performed with IBM SPSS Basic Statistics for Windows, version 20.0 (IBM Corp, 2011). Descriptive statistics were examined and reported for continuous data as medians and interquartile ranges; categorical data were reported as counts and percentages. All statistical tests were two-tailed and based on a 0.05 significance level. Because data were not normally distributed and sample sizes were unequal, differences between medians were assessed using the Kruskal-Wallis one-way analysis of variance. Differences between nominal variables were assessed using the chi-square test.

References

