The Efficacy of Facial Effleurage on Acute Rhinosinusitis
Chelsea Weidman, M.S.; Matthew Cannon, D.O.; Randal Gregg, Ph.D.; Alexis Stoner, Ph.D., MPH; Christopher McCarthy, M.D.; Jerome Aya-ay, M.D.; Oshea Escamilla, D.O., Jillian Bradley, Ph.D.

Introduction
Acute Rhinosinusitis
- Sudden onset of symptoms (<12 weeks) include anterior/posterior mucopurulent discharge PLUS nasal obstruction/pressure/pain
- RS is the 5th most common diagnosis in the U.S. for which antibiotics are prescribed
- Typically viral etiology, but can be bacterial, fungal or allergic
- Regardless of etiology, antibiotics are prescribed to 85-96% of patients in the US

Facial Effleurage
- Facial effleurage is an Osteopathic Manipulative Technique where the physician applies pressure to the tissues in an effort to remove any blockages within the lymphatic flow. Hypothetically, this will move the antigens into the draining lymph nodes allowing the activation of the immune system. This would also allow the environment to become refreshed providing new inflammatory cells into the area to fight the invading pathogenic agent.

Physical Touch Control
Moving the patient in all the steps as the Facial effleurage, without applying any pressure
- This will hopefully capture placebo effects, without providing any beneficial effects of the lymphatic movement caused by the osteopathic technique.

Antibiotics
- Antibiotics are the standard of treatment for patients with acute rhinosinusitis. The responsible physician for this study decided the best antibiotic treatment for the patients. The most recommended antibiotic treatment is amoxicillin + clavulanate

Hypothesis
Our hypothesis is that the Osteopathic Manipulative Technique, Facial Effleurage, will cause significant changes in the concentration and effectiveness of the immune system resulting in significant benefits for patient symptom severity, symptom duration, and time to symptom resolution, especially compared to patients who do not receive the OMT treatment.

Methods
Overall Study Design
Day 1: Initial Visit
- Eligibility
- Randomization
- Survey and Sample Collection

Day 2: Night and Morning TSS
- 1 hour Post-treatment
- Survey and Sample Collection

Day 3: Night and Morning TSS

Day 4: Night and Morning TSS

Day 5: Night and Morning TSS

Day 6: Night and Morning TSS

Day 7: Follow-up Visit
- Survey and Sample Collection

Patient Eligibility

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 18-70</td>
<td>Temperature ≤ 102.5°F</td>
</tr>
<tr>
<td>Presenting with acute RS</td>
<td>Unusual antibiotic use within last 30 days</td>
</tr>
<tr>
<td>OR Healthy (control)</td>
<td>Taken oral antibiotic use within 15 days</td>
</tr>
<tr>
<td>OR Healthy (control)</td>
<td>Has a comorbidity, taking antibiotics or another therapy</td>
</tr>
<tr>
<td>OR Healthy (control)</td>
<td>Needs to be hospitalized</td>
</tr>
<tr>
<td>OR Healthy (control)</td>
<td>Is currently pregnant, nursing or not at least 3 months away from pregnancy</td>
</tr>
<tr>
<td>OR Healthy (control)</td>
<td>Bone fractures to the face or neck</td>
</tr>
<tr>
<td>OR Healthy (control)</td>
<td>Visible nasal polyps, abscesses, incisions</td>
</tr>
</tbody>
</table>

Randomized into treatment groups
- Healthy Patients + No Treatment
- Healthy Patients + Physical Touch Control
- Healthy Patients + Facial Effleurage
- Rhinosinusitis + Antibiotics
- Rhinosinusitis + Physical Touch Control
- Rhinosinusitis + Facial Effleurage
- Rhinosinusitis + Antibiotics + Physical Touch Control
- Rhinosinusitis + Antibiotics + Facial Effleurage

Setting
The study is being performed at two sites of a direct-payment outpatient clinic. Both sites are in the same mid-sized, manufacturing and industrial, rural town.

Demographics

Title, Authors, and Affiliations

Photographs / Graphics

Adding Logos / Seals

Insert > Pictures. Logos taken from web sites are likely to be low quality.
**Results**

Fig. 1 Current Patient Enrollment and target numbers for patient enrollment

Fig. 2 The severity of symptoms as measured by the Total Symptom Score for all patients presenting with the symptoms of acute rhinosinusitis (sick) and patients without those symptoms (healthy). *** indicates a two-tailed p-value of <0.001. The mean for healthy patients is 15, the mean for sick patients is 42.02.

Fig. 3 Patients reported feeling any discomfort with the treatments. One patient in the healthy control group, who did not receive any treatment, and two patients in the healthy control + Facial Effleurage group reported mild, momentary discomfort.

Fig. 4 The difference in the severity of symptoms (TSS) prior to treatment (Pre-Tx) and 1 hour after the initiation of treatment (Post-Tx) * indicates a two-tailed p-value of <0.05. The color of the asterisks indicates which group was compared and found significant.

Fig. 5 Clinical Success was considered as the patient-reported lack of rhinosinusitis symptoms. The Rate of Clinical Success was calculated as the number of patients without rhinosinusitis symptoms / total patients in treatment group, at the follow-up visit (A). Symptom Resolution occurred when the TSS at the follow-up visit was not significantly different than the average healthy control TSS (B). The percentage of patients that achieved Symptom Resolution at each time point is indicated.

**Results Continued**

Fig. 6 Blood was drawn from patients prior to treatment and 1 hour after treatment began. IL-6 levels were determined via ELISA. The post-treatment numbers were subtracted from the pre-treatment numbers to determine the change between the treatments (Post-Tx).

Fig. 7 Blood was drawn from patients prior to treatment and 7 days after treatment. IL-6 levels were determined via ELISA. The follow-up numbers were subtracted from the pre-treatment numbers to determine the change after 7 days (F/U).

Fig. 8 Blood was drawn from patients prior to treatment and 1 hour after treatment began. TNFα levels were determined via ELISA. The post-treatment numbers were subtracted from the pre-treatment numbers to determine the change between the treatments (Post-Tx).

Fig. 9 Blood was drawn from patients prior to treatment and 7 days after treatment. TNFα levels were determined via ELISA. The follow-up numbers were subtracted from the pre-treatment numbers to determine the change after 7 days (F/U).
The Efficacy of Facial Effleurage on Acute Rhinosinusitis  
Chelsea Weidman, M.S.; Matthew Cannon, D.O.; Randal Gregg, Ph.D.; Alexis Stoner, Ph.D., MPH; Christopher McCarthy, M.D.; Jerome Aya-ay, M.D.; Oshea Escamilla, D.O.; Jillian Bradley, Ph.D.  
The Edward Via College of Osteopathic Medicine – Carolinas Campus

**Osteopathic Research Students**

Sara Hrivnak, OMSII  
Jessica Resnick, OMSII  
Abigail White, OMSII  
Hayden White, OMSII  
Rebecca Beaudry, OMSII  
Nicole Rosenberg, OMSII  
Rebecca Basch, OMSII  
Lloyd Hoehle, OMSII  
Ludy Martinez, OMSII  
Monica Boyd, OMSIII  
Kyle Burke, OMSIII  
Mario Carrasco, OMSIII  
Katrina Hsieh, OMSIII  
Derek Kunda, OMSIII  
Elizabeth Pepper, OMSIII  
Jaimie Seawell, D.O.  
Avashkar Woompath, D.O.  
Jordan Lakin, D.O.  
Sunny Patel, D.O.

**Conclusions**

- This project is still ongoing and collecting data. We have enrolled about half of the participants needed. (Fig. 1)
- We are able to reliably measure significantly worse symptoms in patients with acute rhinosinusitis symptoms with the Total Symptom Score survey (Fig. 2)
- We are not causing any significant patient discomfort with the facial effleurage technique, or with the newly derived physical touch technique (Fig. 3)
- We have demonstrated a significant change in the levels of serum cytokines and antibody isotypes in patients with acute rhinosinusitis, suggesting that the inflammatory environment is being refreshed by the lymphatic technique. (Fig. 8 and other data not shown here)
- We have measured significant changes in white blood cell numbers after Facial Effleurage, changes in serum complement levels, and differences in mucosal cytokine levels (data not shown here)

The Facial Effleurage OMM technique significantly improves the severity of symptoms experienced by patients with acute rhinosinusitis 1 hour after treatment (Fig. 4) and that effect is long-lasting until at least the follow-up visit 7 days after treatment (Fig.5) compared to healthy controls, and to patients who only receive antibiotics.
- This improvement in symptoms is most likely driven by a significant movement in inflammatory cells, cytokines, antibodies, and effector molecules.

**Acknowledgements**

We would like to thank many people for their contributions.

This project is conducted as a collaborative project with Palmetto Proactive Healthcare, LLC. In Spartanburg, S.C. with the help of Christopher McCarthy, M.D.; Jerome Aya-ay, M.D. and Oshea Escamilla, D.O.

The research administration at VCOM has helped with the implementation of the project throughout the development.

This project was funded by a research grant in the Research Eureka Accelerator Program generously provided by the Edward Via College of Osteopathic and a research grant (2031815/22) generously provided by the American Osteopathic Association.